0 JBC
↳1 JBCToGraph (⇒, 50 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 150 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Double3 {
private static void test(int n) {
while (--n > 0) test(n);
}
public static void main(String[] args) {
test(10);
}
}
Generated 13 rules for P and 2 rules for R.
P rules:
248_0_test_Inc(EOS(STATIC_248), i33) → 250_0_test_Load(EOS(STATIC_250), +(i33, -1))
250_0_test_Load(EOS(STATIC_250), i36) → 252_0_test_LE(EOS(STATIC_252), i36, i36)
252_0_test_LE(EOS(STATIC_252), i40, i40) → 255_0_test_LE(EOS(STATIC_255), i40, i40)
255_0_test_LE(EOS(STATIC_255), i40, i40) → 258_0_test_Load(EOS(STATIC_258), i40) | >(i40, 0)
258_0_test_Load(EOS(STATIC_258), i40) → 261_0_test_InvokeMethod(EOS(STATIC_261), i40, i40)
261_0_test_InvokeMethod(EOS(STATIC_261), i40, i40) → 265_1_test_InvokeMethod(265_0_test_Inc(EOS(STATIC_265), i40), i40, i40)
265_0_test_Inc(EOS(STATIC_265), i40) → 269_0_test_Inc(EOS(STATIC_269), i40)
265_1_test_InvokeMethod(256_0_test_Return(EOS(STATIC_256)), i43, i43) → 276_0_test_Return(EOS(STATIC_276), i43, i43)
269_0_test_Inc(EOS(STATIC_269), i40) → 210_0_test_Inc(EOS(STATIC_210), i40)
210_0_test_Inc(EOS(STATIC_210), i24) → 248_0_test_Inc(EOS(STATIC_248), i24)
276_0_test_Return(EOS(STATIC_276), i43, i43) → 278_0_test_JMP(EOS(STATIC_278), i43)
278_0_test_JMP(EOS(STATIC_278), i43) → 280_0_test_Inc(EOS(STATIC_280), i43)
280_0_test_Inc(EOS(STATIC_280), i43) → 248_0_test_Inc(EOS(STATIC_248), i43)
R rules:
252_0_test_LE(EOS(STATIC_252), i39, i39) → 254_0_test_LE(EOS(STATIC_254), i39, i39)
254_0_test_LE(EOS(STATIC_254), i39, i39) → 256_0_test_Return(EOS(STATIC_256)) | <=(i39, 0)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
248_0_test_Inc(EOS(STATIC_248), x0) → 265_1_test_InvokeMethod(248_0_test_Inc(EOS(STATIC_248), +(x0, -1)), +(x0, -1), +(x0, -1)) | >(x0, 1)
265_1_test_InvokeMethod(256_0_test_Return(EOS(STATIC_256)), x0, x0) → 248_0_test_Inc(EOS(STATIC_248), x0)
R rules:
Filtered ground terms:
248_0_test_Inc(x1, x2) → 248_0_test_Inc(x2)
256_0_test_Return(x1) → 256_0_test_Return
Cond_248_0_test_Inc(x1, x2, x3) → Cond_248_0_test_Inc(x1, x3)
Filtered duplicate args:
265_1_test_InvokeMethod(x1, x2, x3) → 265_1_test_InvokeMethod(x1, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
248_0_test_Inc(x0) → 265_1_test_InvokeMethod(248_0_test_Inc(+(x0, -1)), +(x0, -1)) | >(x0, 1)
265_1_test_InvokeMethod(256_0_test_Return, x0) → 248_0_test_Inc(x0)
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
248_0_TEST_INC(x0) → COND_248_0_TEST_INC(>(x0, 1), x0)
COND_248_0_TEST_INC(TRUE, x0) → 265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0, -1)), +(x0, -1))
COND_248_0_TEST_INC(TRUE, x0) → 248_0_TEST_INC(+(x0, -1))
265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0) → 248_0_TEST_INC(x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
(0) -> (2), if (x0[0] > 1 ∧x0[0] →* x0[2])
(1) -> (3), if (248_0_test_Inc(x0[1] + -1) →* 256_0_test_Return∧x0[1] + -1 →* x0[3])
(2) -> (0), if (x0[2] + -1 →* x0[0])
(3) -> (0), if (x0[3] →* x0[0])
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 248_0_TEST_INC(x0[0])≥NonInfC∧248_0_TEST_INC(x0[0])≥COND_248_0_TEST_INC(>(x0[0], 1), x0[0])∧(UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 248_0_TEST_INC(x0[0])≥NonInfC∧248_0_TEST_INC(x0[0])≥COND_248_0_TEST_INC(>(x0[0], 1), x0[0])∧(UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12 + (4)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (>(x0[0], 1)=TRUE∧x0[0]=x0[2] ⇒ 248_0_TEST_INC(x0[0])≥NonInfC∧248_0_TEST_INC(x0[0])≥COND_248_0_TEST_INC(>(x0[0], 1), x0[0])∧(UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥))
(8) (>(x0[0], 1)=TRUE ⇒ 248_0_TEST_INC(x0[0])≥NonInfC∧248_0_TEST_INC(x0[0])≥COND_248_0_TEST_INC(>(x0[0], 1), x0[0])∧(UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥))
(9) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(10) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(11) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_248_0_TEST_INC(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_12 + (4)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(13) (COND_248_0_TEST_INC(TRUE, x0[1])≥NonInfC∧COND_248_0_TEST_INC(TRUE, x0[1])≥265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))∧(UIncreasing(265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))), ≥))
(14) ((UIncreasing(265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(15) ((UIncreasing(265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(16) ((UIncreasing(265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(17) ((UIncreasing(265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))), ≥)∧[bni_14] = 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(18) (COND_248_0_TEST_INC(TRUE, x0[2])≥NonInfC∧COND_248_0_TEST_INC(TRUE, x0[2])≥248_0_TEST_INC(+(x0[2], -1))∧(UIncreasing(248_0_TEST_INC(+(x0[2], -1))), ≥))
(19) ((UIncreasing(248_0_TEST_INC(+(x0[2], -1))), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(20) ((UIncreasing(248_0_TEST_INC(+(x0[2], -1))), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(21) ((UIncreasing(248_0_TEST_INC(+(x0[2], -1))), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(22) ((UIncreasing(248_0_TEST_INC(+(x0[2], -1))), ≥)∧[bni_16] = 0∧0 = 0∧[2 + (-1)bso_17] ≥ 0)
(23) (x0[3]=x0[0] ⇒ 265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0[3])≥NonInfC∧265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0[3])≥248_0_TEST_INC(x0[3])∧(UIncreasing(248_0_TEST_INC(x0[3])), ≥))
(24) (265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0[3])≥NonInfC∧265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0[3])≥248_0_TEST_INC(x0[3])∧(UIncreasing(248_0_TEST_INC(x0[3])), ≥))
(25) ((UIncreasing(248_0_TEST_INC(x0[3])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(26) ((UIncreasing(248_0_TEST_INC(x0[3])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(27) ((UIncreasing(248_0_TEST_INC(x0[3])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(28) ((UIncreasing(248_0_TEST_INC(x0[3])), ≥)∧[bni_18] = 0∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(248_0_TEST_INC(x1)) = [2]x1
POL(COND_248_0_TEST_INC(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(265_1_TEST_INVOKEMETHOD(x1, x2)) = [2] + [2]x2
POL(248_0_test_Inc(x1)) = x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(256_0_test_Return) = [-1]
COND_248_0_TEST_INC(TRUE, x0[2]) → 248_0_TEST_INC(+(x0[2], -1))
265_1_TEST_INVOKEMETHOD(256_0_test_Return, x0[3]) → 248_0_TEST_INC(x0[3])
248_0_TEST_INC(x0[0]) → COND_248_0_TEST_INC(>(x0[0], 1), x0[0])
248_0_TEST_INC(x0[0]) → COND_248_0_TEST_INC(>(x0[0], 1), x0[0])
COND_248_0_TEST_INC(TRUE, x0[1]) → 265_1_TEST_INVOKEMETHOD(248_0_test_Inc(+(x0[1], -1)), +(x0[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (3), if (248_0_test_Inc(x0[1] + -1) →* 256_0_test_Return∧x0[1] + -1 →* x0[3])